Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters
نویسندگان
چکیده
Metal-molecule-metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters. In this way, we elucidate the collective behavior of parallel molecular wires, bridging the gap between single molecule and large-area monolayer electronics, where even in the latter case transport is usually dominated by finite-size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be distinctly nonlinear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems.
منابع مشابه
Studying the effects of pH and molecular charge on the passive and iontophoretic permeation of L-phenylalanine through cellulose acetate membrane
Iontophoresis is one of the skin permeation enhancement methods involving the transport of drugs through the skin under the effect of electrical current. The effect of molecular charge on the iontophoretic permeation of drugs has not been completely understood yet. Therefore the effect of passive and iontophoretic permeation of L-phenylalanine at pH 3.6 (positive charge) and pH 8 (negative ch...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملAbstract Submitted for the MAR08 Meeting of The American Physical Society Imaging massless Dirac fermion flow in graphene nanoribbons
Submitted for the MAR08 Meeting of The American Physical Society Imaging massless Dirac fermion flow in graphene nanoribbons LIVIU P. ZÂRBO, Texas A&M University, BRANISLAV K. NIKOLIĆ, University of Delaware — Since its recent experimental discovery, graphene has been the focus of intense theoretical and experimental research. Its unconventional electronic structure characterized by the linear ...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017